Mielenkiintoinen lause heittoliikkeestä

GeoGebra Materiaaleihin ilmestyi lokakuun lopussa Kari Peisan tekemä appi liittyen vinoon heittoliikkeeseen. En ole itse aiemmin törmännyt tähän teoreemaan/lauseeseen/väitteeseen, mutta ainakin minua se kummastuttaa kummasti. Pakkohan tätä on tutkia. Karin mukaan ongelma on esitetty alun perin eräässä Facebook-ryhmässä.

GeoGebra appissa ”Pisimmän heittoliikkeen alku- ja loppunopeus” https://www.geogebra.org/m/hgujahsm on seuraava väite.

Oheisessa kuvassa asetin h:n arvoksi 4 ja v:n arvoksi 10. Liu’un alfa avulla säädin kantaman mahdollisimman suureksi. Vaikuttaa siltä, että väite pitää ainakin likiarvoisesti paikkansa. Kokeilemalla eri korkeuksilla ja alkunopeuksilla alkaa vaikuttaa, että väite on luultavasti totta.

Päätinpä yrittää ”todistaa” lausetta kokeilemalla joillain lähtöarvoilla. Valitsin alkunopeudeksi 5 (m/s) ja lähtökorkeudeksi 13. Putoamiskiihtyvyys on 9.81 m/s2. 

Ratkaisun juoni on yksinkertainen. Määritetään kantaman lauseke kulman funktiona. Ratkaistaan kantaman derivaatan nollakohta, näin saadaan kulma, jolla kantama on suurin. Kyseisen kulman avulla lasketaan lentoaika ja sen avulla nopeuden komponentit kyseisellä ajan hetkellä. Alla kuvankaappauksia ja selityksiä ”todistukseen”.

rivi 1: kantamayhtälö

rivi 2: RA on yhtälön ratkaisulista

rivi 3: aika on suurempi ratkaisuista

rivi 4: kantama kulman funktiona

Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

Kuvaajassa kantama kulman funktiona. Kulma yksiköissä radiaani.

rivit 5-8: Kantaman derivaatan nollakohta, minua kiinnostaa vain tuo ensimmäinen eli maksimikohta.

Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

rivi 9: tt on lentoaika.

rivit 10–11: loppunopeuden komponentit

rivi 12: nopeuden suunta lopussa radiaaneina

rivit 13 ja 14: Alku- ja loppunopeusvektoreiden välinen kulma

Vaikuttaa siltä, että Lause pitää paikkansa.

Kun aloin kokeilla yleistä todistusta, niin törmäsin hankaluuksiin tuossa rivin 6 yhtälön ratkaisussa. Siitä taitaa tulla kuudennen asteen yhtälö sin(α):n suhteen. Pitääpä tutkia, miten saan lauseen todistettua yleisesti. 

Tai sitten jätän sen tehtäväksi sinulle arvoisa lukija.

OMG-hiukkanen – GeoGebran Lukuarvona-komento

Luin Wikipedia-artikkelin OMG-hiukkasesta. Siinä kerrottiin, että: ”OMG-hiukkanen eli Oh-My-God-hiukkanen on lempinimi kosmiselle hiukkaselle, joka havaittiin 15. lokakuuta 1991 Fly’s Eye -ilmaisimella Dugway Proving Groundsissa, Utahissa. Hiukkanen oli atomia pienempi, mutta sen liike-energia oli yhtä suuri kuin 25 m/s (90 km/h) liikkuvalla pesäpallolla (160 g): noin 3 × 1020 elektronivolttia eli suunnilleen 50 joulea. Hiukkanen oli luultavasti lähes valonnopeudella kulkeva protoni. Mikäli se oli protoni, sen nopeus oli noin (1 − (5 × 10−24)) c. Jos tällä nopeudella liikkuva hiukkanen lähtisi liikkeelle yhtä aikaa fotonin kanssa, vuoden kuluttua se olisi vain 46 nanometriä fotonia jäljessä.” 

Myös useammassa muussa artikkelissa kerrotaan nopeudeksi v = 0.9999999999999999999999951 c

tai että c – v ≈ 5·10-15 m/s. Pakkohan se on minunkin laskea, varsinkin kun GeoGebra laskee likiarvoilla vain 15 merkitsevällä numerolla. Lasken varmuuden vuoksi saman laskun myösWolframAlphalla ja Pythonilla.

Ratkaisu GeoGebralla

Lasketaan nopeus käyttämällä Suppeaa suhteellisuusteoriaa ja protonin kokonaisenergiana arvoa 51 J, lukuarvo löytyy englanninkielisestä Wikipedia-artikkelista.

MAOL-taulukkokirjasta löytyvät tarvittavat kaavat.

Kuva, joka sisältää kohteen pöytä

Kuvaus luotu automaattisesti

Kirjoitetaan yhtälö GeoGebran CASiin, ratkaistaan nopeus v ja sijoitetaan arvot. Käytän Ratkaisut-komentoa, jotta saan ratkaisuksi listan, jossa on vain v:n lausekkeet, niitä on mukavampi käsitellä. Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

Nopeudeksi saadaan tasan 300000000 m/s. Vaikka GeoGebran asetuksista muuttaa tarkkuuden 15 merkitseväksi numeroksi, niin nopeuden arvo ei muutu.

Jotta lausekkeen arvo lasketaan suuremmalla tarkkuudella, niin tarvitaan Lukuarvona-komentoa. Sen toiseksi syötteeksi voi laittaa halutun tarkkuuden.

Rivillä 6 on sijoituksen tulos, kun käytin Sijoita työkalua ja valitsin Sijoita painikkeen

Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

Tässä on hyvä hetki muistuttaa bugista, joka on vaivannut GeoGebraa jo jonkin aikaan. Ainakin GeoGebran versionumerossa 666 oli vielä vika, jossa sijoita-työkalun Sijoita-painikkeen painaminen aiheutti virheellisiä tuloksia, kun sijoitetut luvut oli esitetty 3E8-tyyppisesti. Tätä vikaa ei enää ole lokakuun 21 GeoGebran 672-versioissa. Alla 666-version virheellinen sijoitus.

Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

Lasketaan vielä, kuinka paljon saatu tulos poikkeaa valonnopeudesta muutamalla eri tavalla.

Kuva, joka sisältää kohteen pöytä

Kuvaus luotu automaattisesti

Laskun olisi voinut suorittaa ilman Sijoita-työkalua käyttämällä Sijoita-komentoa.
Sijoita( <Lauseke>, <Korvauslista>)

WolframAlpha ja Python

WolframAlpha on siitä mukava, että se laskee oletuksena isolla tarkkuudella. Tässä syötän luvut uudella MATH INPUT-menetelmällä.

Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

WoframAlphan tulos hieman enemmillä desimaaleilla. 2.99999999999999999999998697226643598615916955014472340698701… × 10^8

Pythonissa tulee vastaan samankaltainen laskentatarkkuusongelma kuin GeoGebrassakin. Alla Colabista kaapattuja kuvia.

Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

Pythonin saa laskemaan mielivaltaisella tarkkuudella vaikkapa mp-math-kirjaston avulla.

Kuva, joka sisältää kohteen teksti

Kuvaus luotu automaattisesti

Pari linkkiä

Wikipedia

https://fi.wikipedia.org/wiki/OMG-hiukkanen

https://en.wikipedia.org/wiki/Oh-My-God_particle

John Walkerin artikkeli vuodelta 1994

https://www.fourmilab.ch/documents/OhMyGodParticle/

Dr. Bea – the public examination

Me and my wife tried to travel to Iceland last summer. Because of the covid we had to postpone it to my Autumn holiday. It just happened that friend Bea’s doctor public examination was on that week at the University of Iceland, so of course we had to go to see it.

Her dissertation title was “Silent video tasks – their definition, development, and implementation in upper secondary school mathematics classrooms”. I have not yet read the thesis/articles, so I will not comment on that.

The dissertation can be found at https://opinvisindi.is/handle/20.500.11815/2680

After the formalities Bea had her lecture, she explained what silent videos are, how they are used in classroom and about the research and the methods.

The opponents, prof. Dr Merrilyn Goos (Australia) and Prof. Dr. Morten Misfelt (Denmark) had their statements remotely and there was very interesting discussion about the subject. 

And finally, the dissertation was accepted.

There are many ideas that started to wake in my brain while listening the discussions. Like what are we teaching when we teach math, physics, or programming? Facts, methods, processes, problem solving, algorithms, how to use programs, how to use pen, pencil, protractor, and ruler, …? Is Bea’s silent videos the same thing like when I use simulations or videos in physics to learn about new concepts? Why some teachers want to change their ways of teaching and why they return to old ways so often? Is it a good or a bad thing? 

I hope I will write about those ideas later. 

more photos from the examination

https://photos.app.goo.gl/1eE9LwLpjMBtRYJG8

some tourist photos

https://photos.app.goo.gl/CrybM5moDnUEAfJs7